55 research outputs found

    Sea state monitoring using coastal GNSS-R

    Full text link
    We report on a coastal experiment to study GPS L1 reflections. The campaign was carried out at the Barcelona Port breaker and dedicated to the development of sea-state retrieval algorithms. An experimental system built for this purpose collected and processed GPS data to automatically generate a times series of the interferometric complex field (ICF). The ICF was analyzed off line and compared to a simple developed model that relates ICF coherence time to the ratio of significant wave height (SWH) and mean wave period (MWP). The analysis using this model showed good consistency between the ICF coherence time and nearby oceanographic buoy data. Based on this result, preliminary conclusions are drawn on the potential of coastal GNSS-R for sea state monitoring using semi-empirical modeling to relate GNSS-R ICF coherence time to SWH.Comment: All Starlab authors have contributed significantly; the Starlab author list has been ordered randomly. Submitted to GR

    The Eddy Experiment: accurate GNSS-R ocean altimetry from low altitude aircraft

    Full text link
    During the Eddy Experiment, two synchronous GPS receivers were flown at 1 km altitude to collect L1 signals and their reflections from the sea surface for assessment of altimetric precision and accuracy. Wind speed (U10) was around 10 m/s, and SWH up to 2 m. A geophysical parametric waveform model was used for retracking and estimation of the lapse between the direct and reflected signals with a 1-second precision of 3 m. The lapse was used to estimate the SSH along the track using a differential model. The RMS error of the 20 km averaged GNSS-R absolute altimetric solution with respect to Jason-1 SSH and a GPS buoy measurement was of 10 cm, with a 2 cm mean difference. Multipath and retracking parameter sensitivity due to the low altitude are suspected to have degraded accuracy. This result provides an important milestone on the road to a GNSS-R mesoscale altimetry space mission.Comment: All Starlab authors have contributed significantly; the Starlab Author list has been ordered randoml

    Potential synergetic use of GNSS-R signals to improve the sea-state correction in the sea surface salinity estimation: Application to the SMOS mission

    Get PDF
    It is accepted that the best way to monitor sea surface salinity (SSS) on a global basis is by means of L-band radiometry. However, the measured sea surface brightness temperature (TB) depends not only on the SSS but also on the sea surface temperature (SST) and, more importantly, on the sea state, which is usually parameterized in terms of the 10-m-height wind speed (U10) or the significant wave height. It has been recently proposed that the mean-square slope (mss) derived from global navigation satellite system (GNSS) signals reflected by the sea surface could be a potentially appropriate sea-state descriptor and could be used to make the necessary sea state TB corrections to improve the SSS estimates. This paper presents a preliminary error analysis of the use of reflected GNSS signals for the sea roughness correction and was performed to support the European Space Agency’s Soil Moisture and Ocean Salinity (SMOS) mission; the orbit and parameters for the SMOS instrument were assumed. The accuracy requirement for the retrieved SSS is 0.1 practical salinity units after monthly averaging over 2◦ × 2◦ boxes. In this paper, potential improvements in salinity estimation are hampered mainly by the coarse sampling and by the requirements of the retrieval algorithm, particularly the need for a semiempirical model that relates TB and mss.Postprint (published version

    The GNSS-R Eddy Experiment II: L-band and Optical Speculometry for Directional Sea-Roughness Retrieval from Low Altitude Aircraft

    Full text link
    We report on the retrieval of directional sea-roughness (the full directional mean square slope, including MSS, direction and isotropy) through inversion of Global Navigation Satellite System Reflections (GNSS-R) and SOlar REflectance Speculometry (SORES)data collected during an experimental flight at 1000 m. The emphasis is on the utilization of the entire Delay-Doppler Map (for GNSS-R) or Tilt Azimuth Map (for SORES) in order to infer these directional parameters. Obtained estimations are analyzed and compared to Jason-1 measurements and the ECMWF numerical weather model.Comment: Proceedings from the 2003 Workshop on Oceanography with GNSS Reflections, Barcelona, Spain, 200

    Rainfall Field Reconstruction by Opportunistic Use of the Rain-Induced Attenuation on Microwave Satellite Signals: The July 2021 Extreme Rain Event in Germany as a Case Study

    Get PDF
    This paper presents a practical application of an opportunistic technique for the estimation of rainfall intensity and accumulated precipitation. The proposed technique is based upon signal strength measurements made by commercial-grade interactive satellite terminals. By applying some processing, the rain-induced attenuation on the microwave downlink from the satellite is first evaluated; then the rain attenuation is eventually mapped into a rainfall rate estimate via a tropospheric model. This methodology has been applied to a test area of 30Ă—30 km2 around the city of Dortmund (North Rhine-Westphalia, upper basin of Ermscher river), for the heavy rain event that devastated western Germany in July, 2021. A rainfall map on this area is obtained from the measurements collected by a set of satellite terminals deployed in the region, and successfully compared with a map obtained with a conventional weather radar

    Tsunami detection using the PARIS concept

    Get PDF
    Abstract On 26 December 2004 a tsunami generated by an earthquake with its epicentre in the Indian Ocean West of Indonesia caused a real human and material catastrophe in the region. After the event some proposals to establish a network of sensors for tsunami detection were put forward. This paper presents an alternative concept that can be applied from satellite, aircraft or from the coast, and which can complement such a network of sensors for fast tsunami detection. The concept makes use of GNSS signals reflected from the ocean's surface to perform mesoscale ocean altimetry. The technique, designated PARIS (Passive Reflectometry and Interferometry System), aims at capturing fast topographic events happening on the ocean surface such as eddies and fronts. The paper includes details of some aircraft experiments whereby a PARIS altimeter was used to map a topographic signature with amplitude and wavelength similar to a tsunami in open ocean
    • …
    corecore